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Abstract 

Fibonacci numbers are studied with respect to the topological theory of 
benzenoid hydrocarbons. These numbers are identified as the number of Kekulé 
structures of nonbranched all-benzenoid hydrocarbons, the number of matchings 
of paths, the number of independent sets of vertices of paths, the number of non- 
attacking rooks of certain rook boards, as well as the number of Clar structures of 
certain benzenoid hydrocarbons. Fibonacci numbers were also identified as the 
number of conjugated circuits of certain benzenoid hydrocarbons and thus they 
were also related to the structure-resonance model. Maximal independent sets of 
caterpillar trees are also shown to be Fibonacci numbers. 

1. Introduction 

The numbers 1 ,1 ,2 ,3 ,5 ,  8, 13,21,34, 55, 89 . . . .  are known as the Fibonacci 
numbers. In his book Liber Abaci published in 1202, the Italian mathematician 
Leonard Fibonacci of Pisa posed the following problem [1] : 
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"Each month the female of a pair of rabbits gives birth to a pair of 
rabbits (of different sexes). Two months later the female of the new 
pair gives birth to a pair of  rabbits. Find the number of rabbits in the 
beginning of the year." 

The answer to this problem is 377 pairs of rabbits and every generation represents 
what is now called a Fibonacci number, as it is depicted below [2] in fig. 1. The name, 
Fibonacci numbers, was given by the nineteenth-century French mathematician 
Edouard Lucas [3]. 

Z ero M onth ~ FO= 1 

Firsl Month -~ F 1= 1 
/ , , , ,  

Second Month ~ ~ F2=2 
/ \  

Third Mon,h ~ ~ ~ FS= 5 
/ \  l / " ,  

Four,h Mon'~h / \ i l  ~ ~ ! ~ , , , ~ / \  Fä =5 

] /\11111 1 / \ 1  / \  1 

Fig. 1. Pictorial illustration of the *Rabbit Problem" 
that led to Fibonacci numbers. Bars with solid circles 
indicate a pair of rabbits ready for off-springs. 

It is impossible to over-emphasize the importance and relevance of the 
Fibonacci numbers to the mathematical sciences and related areas. The interest in 
these numbers, wkich has grown rapidly during the present century, led the Soviet mathe- 
matician N. Vorobyov to publish bis book [2] on Fibonacci numbers in 1961. In 
1963, Hoggatt and his associates [3] founded The FibonacciAssociation and began 
publishing The Fibonacci Quarterly. 

In this review, we will emphasize the role of Fibonacci numbers in the 
topological theory of aromatic benzenoid hydrocarbons and their relation to the 
Clar sextet theory. 

A rather popular result which connects Fibonacci numbers with benzenoid 
systems is the classical paper by Gordon and Davison [4], where it was demonstrated 
that the numbers of Kekulé structures (known in the mathematical literature as 
"linear factors" or "1-factors") of  the zigzag polyacenes [4,5] are Fibonacci numbers. 
Although this review considers the role of Fibonacci numbers in polyhex and related 
graphs [6], we first very briefly mention other avatars of  Fibonacci numbers. One 
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quite early mention of these numbers was made by Cook in his book The Curves of  
Life [7], first published in 1914. He modeled the composition of  the head of the 
giant sunflower by a series of spiral curves (on which the seeds are planned), forming 
a system of intersecting curves radiating from the center in such a manner that five 
such curves are turning in one direction and eight in the other, giving the results of  
intersection in a uniform sequence. Further, Cook suggested that "the only correct 
way of interpreting systems of intersecting curves is in terms of the number of curves 
radiating in each direction, and these numbers always occur in the Fibonacci series." 
The ratio of any successive pair of Fibonacci numbers is approximately constant, 

_1 (1 -+V~) = ¢k. Cook while as one goes up the series this ratio approaches a limit -~  
observes that the inverse angle of Ó of 360 degrees is 137 ° 30' 27.95" and that if 
the leaves of a plant were set round a straight stem at a divergence angle of about 
137 ° 30' 28", no two leäves would ever be exactly superimposed on one another, 
which is the ideal situation for maximum light exposure. In fact, the angle 
137 ° 30' 27.95" is called "Fibonacci or ideal angle" in the sense of plant growth of 
spirally constructed flowers. Many other interesting fäcts might be inferred from the 
book by Cook [7], but hefe we will pursue the ratio ~ in more detail: It is observed 
that the Fibonacci series might be viewed as a geometrical progression, the successive 
terms of which can be obtained by addition as well as by multiplication by the common 

1 (1 -+ x/-5)'~ 1.618033988750 or ratio Ó in the common way, i.e. ~2 = ~ + 1 or ~ = ~ = 
-0.618033988750. (In certain circumstänces, the signs may be opposite and q5 may 
have the four approximate välues [7] +1 .618, -1 .618,  +0.618 a n d - 0 . 6 1 8 ,  which 
remind us of the eigenspectrum of a path on four vertices [8] .) The symbol ~ was 
chosen partly because it is the first letter of Pheidias, in whose sculpture this proportion 
prevails when the distances between its salient points are measured. In fact, this ratio 
was origina!ly called the ~Ratio of Pheidias" [7], now known as the "Golden 
Mean" [9], and is defined to be the ratio of the length of the sides of a rectangle R 
which is similar to the rectangle R'  remaining after cutting off a square section S of 
the parent R. Namely, let a and b, a < b, be the lengths of the sides of  R and a' and 
b' be those of R', a' < b'. Naturally 

b b' 
a a p cB 

and a + a' = b, wh~e b' = a, so that 

~2 - ¢ - 1  = 0 ,  

which is essentially the auxiliary polynomial for the Fibonacci sequence (see eqs. 
1 (1 + x/5). An interesting point is that if 1 - 3  below). The golden mean ~ is then 

one constructs a whole sequence of such rectangles R, R', R " , . .  they are evidently 
"self-similar", a feature in common with the quasicrystals [10,11] and their eigen- 
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value spectra. These quasicrystal models have a deterministic albeit not  periodic 
structure.  In the one-dimensional case, stage-n chains are obtained by joining stage- 

(n - 1) and stage-(n - 2 )  chains, and are sometimes called ~Fibonacci chains".  The 

two- and three-dimensional quasicrystal models are also often closely related, with 

dividing lines (in two-dimensional,  or planes in three-dimensional)  between cells 
spaced out  in "accord"  with the Fibonacci sequence. Burdett  and Miller [12] model  

a quasi-periodic system of  chains as being composed o f  two basic length scales L and S 
arranged in the sequence 

S L  S S L  S L  S S L  S S L  . . . .  

which has numerical similarities to the Penrose tiling [13] .  In such a non-periodic 
pat tern,  one finds five interpenetrat ing sets o f  parallel lines passing through all vertices 
with spacings in the ratio q~: 1 = 1.61803 . . .  : the golden mean. 

A related concept  known a s  Fibonacci words is discussed in The B o o k  o l L  [ 14] 
and may be defined in the following way: 

fo=a 
B =ab 

B = aba 

B = abaab  

f4 = a b a a b a b a  

Zeckendorf ' s  theorem [14] admits the representat ion o f  any integer n as a sum of  

Fibonacci numbers,  viz. n = FkT + FkT_ 1 + " " " + F« , ,  where F n is an n th Fibonacci 

number ,  taking F o = F~ = 1, F 2 = 2, and F n + 2 = Fn + ~ + In" Further ,  to any repre- 
sentation a word akT.  •. al  ao is associated. For  example,  for n = 128 (in base 10) the 
words o f  the Fibonacci representations can be illustrated as follows: 

Flo F9 Fs F7 F6 F~ F« F3 V2 F1 

0 1 0 0 0 1 0 0 0 
0 1 0 0 0 0 1 1 0 
0 0 1 1 0 1 0 0 0 
0 0 1 1 0 0 1 1 0 
0 0 1 0 1 1 1 1 0 
1 1 1 1 0 1 0 0 0 
1 1 1 1 0 0 1 1 0 
1 1 1 0 1 1 1 1 0 
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In the present review, we will not expose more details of such applications 
of Fibonacci numbers, but rather restrict our treatment to the role of these numbers 
in some of  the combinatorial properties of polyhex and related graphs [6]. 

2. T h e  F i b o n a c c i  recurs ive  r e l a t i on  

An nth  Fibonacci number is usually denoted by F n : 

E n = En_ 1 + E n _  2 , (1) 

where F o = F 1 = 1. The recursion (1) defines the Fibonacci sequence {F n} shown in 
fig. 1 and truncated after the twelfth month.  The Fibonacci numbers can be computed 
from their indices using the Binet formula (eq. (10)), which can be derived as follows: 
The general solution of eq. (1) is given by 

F. = «xT + ~x~,  (2) 

where a and 3 are constants to be determined from initial conditions (i.e. F o and F~ ) 
and the X's are solutions of the auxiliary equation of (1). viz., 

x = - x - 1  = 0 .  (3) 

Equation (3)has the following zeros: 

X,  = (1 + x /"5)12;  X 2 = (1 - x / ' - 5 ) / 2 .  ( 4 )  

Therefore, eq. (2) can be rewritten as 

(l + # )  n (I-x/"5) n 
F n = a +/3 2 " (5) 

The initial conditions require that 

F o = a + 3 = 1, (6) 

F , = l  = a ( . x + V r ~ )  + 3 ( 1 - V ' - ~ )  
2 2 " (7) 

Equations (6) and (7) can be solved for a and 13 to give 
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~ = ~  

~=~- ~ / .  

When eqs. (8) and (9) are used in eq. (5), one obtains the Binet formula, viz., 

B~ - %/~ ' [ ( 1  4--~%//-5) n+ '  - 1 -- V/5)  n+ l ]  

(9) 

(10) 

3. Generation of Fibonacci numbers in chemistry 

3.1. KEKULÉ STRUCTURES OF THE '~FIBONACCENES" 

One of the earliest counts in chemistry which lead to Fibonaccl numbers 
is the number of Kekulé structures of the zigzag polyacenes, i.e. phenanthrene, 
chrysene, picene, fulminene, etc., whose numbers of Kekulé structures are, respectively, 
5, 8, 13, 21 representing F 4, F s , F 6, F 7 , respectively (fig. 2). 

K=5=F 4 K=8=F 5 K=]5=F 6 

K=21=F 7 

[:'ig. 2. The first few members of the fibonaccenes (i.e. non- 
branched all-benzenoid hydrocarbons). K's are numbers of 
their Kekülé structure which are Fibonacci numbers. 

In fact, these hydrocarbons have recen'tly been called "fibonaccenes" [15]. 
Thus, if we let K ( A j )  be the number of Kekulé structures of a member of the 
fibonaccenes containing j rings [ 16],  one can write 

K ( A j ÷  : )  = K ( A i +  ~) + K ( A j ) ,  ] >~ 1 (11) 

K ( A j )  = Fj+ , 
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(of course, ] = 1 represents benzene, j = 2 naphthalene, ] = 3 phenanthrene and so 
on). Equations (1) and (11) are isomorphic. 

The sextet polynomial 

In 1975, Hosoya and Yamaguchi [17] published an elegant combinatorial 
description of the resonance relations among the individual hexagons of benzenoid 
hydrocarbons. Thus they defined for the first time their Sextet Polynomial B G(x) 
for a benzenoid hydrocarbon as: 

m 

Ba(x) = Z r(G,k)x k , (12) 
k = O  

where r(G, k) is called the k th  resonant number: it enumerates the number of 
selections of k mutually resonant [18] but disjoint rings in the benzenoid system B: 
r(G, 0) is defined to be unity and rn is the maximal value of k. The sextet polynomials 
of  the fibonaccenes are particularly interesting. We list such polynomials for the 
first few members (R = number of rings) in table 1. Several interesting properties 

Table 1 

Sextet polynomials of the first few members of the fibonaccenes 

R BG(x) BG(1 ) 

1 (0 ~ 

(~ 
(4 

(6 
(; 
(~ 
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are evident. First, tile individual terms, i.e. r(G, ])'s, are binomial coefficients which 
generate the Pascal triangle [19]. Second, the resonant numbers recur in the following 
manner  

r(Gn, / )  + r(Gn + l , / + 1) = r(G n + z, / + 1), ( 1 3 )  

which is isomorphic to eq. (11). Third, tile sextet polynomials of this particular 
class generate Fibonacci numbers when x = 1. Naturally, for a given fibonaccene 
containing R rings one can write [20] ' 

R + 1 - / )  
r(G/)  = . . ( 1 4 )  

] 

The transfer matr ix  [21,22] 

Fibonacci numbers might also be generated using various powers of the transfer 
matrices [21,22] describing double bond. positions in fibonaccenes. This is shown in 
fig. 3 for naphthalene, phenanthrene and a regular network. Each of the Kekul~ 

SS-~DD DD~DD SS~SS 

DD~-DD SS~DD DD~-SS SS~-SS SS*-SS 

Fig. 3. Local states of transfer matrices 
leading to Fibonacci numbers 

valence bond structures labelled by a sequence of local states specified at the dotted- 
line positions. The letters S and D stand for single and double bonds, respectively. 
Thus, SS means that the local state is defined by single bonds where the dotted line 
crosses the edges of  a hexagon and so on. From fig. 3, it is clear that for naphthalene 
the SS state leads to either a DD or an SS state, while a DD initial state can generate 
only another DD state. Thus, one may write a transfer matrix T 2 for naphthalene: 
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SS DD 

,) 
T2 DD 0 1 . 

Similarly, for phenanthrene one has: 

SS DD ss(2 ,) 
Ta DD 1 I . 

(15) 

(16) 

and so on. 

A special family of'branched benzenoid hydrocarbons 

In fig. 4, we show two families of branched all-benzenoid systems. The Kekuld 
counts of such families can be expressed as simple functions of Fibonacci numbers. 
Thus, one can easily write the following identities [11] (some illustrations are shown 
in fig. 4): 

K(Al l )  = F4 +F2 Fa 

K(A12 ) = F s + F 2 F3 

K(A13) -- F6 +F2 F3 

K(A,4) = & + F2 & ,  

and so 

(19) 

(20) 

(21) 

(22) 

on. Similarly, for the second family (with two branched centers) we can write: 

K(AIA1) = b 5 + F  2 (F  3+/74) (23) 

K(A1A12 ) = F 6 +172 (2F 4 +F2-F2)  (24) 

(2 ,) 
= -~ 8 = & (17) T2 T3 1 2 

T3T3T~ = 5 -+21 = Y 7, (18) 

Various powers of T 3 generate 5, 13 ,34 , . . .  (the numbers are the sums of the matrix 
elements which are Fs, FT, F9 . . . .  ), while combinations of  T2 and T 3 generate other 
Fibonacci numbers. For example: 
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Al I A12 A]3 Al4 

AIA 1 AIAII AIAI2 AIAI3 

8=F~ 2"3:F 2 -F 3 (F5 +F2 F 3) F 2 "F 4 

K(AI2)= (F5 + F2F3) K(A]A l )= F5÷F 2 (F3+ F 4 ) 

l:ig. 4. Two families of branched atl-benzenoid hydrocarbons. The last line illustrates 
recursive generation of the number of their Kckuld structures expressed as sums of 

Fibonacci numbers. 

K(AIA13 ) = F 7 + F  2 (2F  5 + F 2 - F  3) 

K(A 1A14) = F 8 + F  2 (2F  6 + F  2/74) 

and similarly for higher members. 

(25) 

(26) 

3.2. THE COUNTING POLYNOMIAL OF HOSOYA [23] 

During his study of  the topological nature of  structural isomers of  saturated 
hydrocarbons, Hosoya [23] defined a counting polynomial H(G;x)o f  a molecular 
graph G by an equation isomorphic to eq. (12), namely: 

m 

H(G:x) = ~. p(G,k)x k. (27) 
k = O  

The numbers p(G, k)'s are known as the number of  k-matchings of  G and their 
sequence is called the sequence of  "nonadjacent numbers" of G. In general, a number 
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Table 2 

Counting polynomials H(G; x)'s and topological indices of the paths 
(L n = path on n vertices) 

n H ( G = L n ; x  ) ZG=Ln 

2 1 +x 2 = F  2 

3 1 +2x 3 = F  3 

4 1 + 3 x + x  2 5 = F  4 

5 1 +4x + 3x 2 8 = F s 

6 l + S x + 6 x 2 + x  3 1 3 = F «  

7 1 + 6 x + 1 0 x  2 +4x  » 2 1 = F  7 

8 1+7x+15x  ~ +10x 3 + x  « 3 4 = F  s 

Table 3 

Indepcndence polynomials W(L; x)'s of the first few paths 

(L n is a path on n vertices) 

n W(Ln;X) W(Ln; 1) 

1 l + x  2 

2 1 +2x 3 

3 1 +3x +x ~ 5 

4 1 +4x +3x 2 8 

5 1 + 5 x + 6 x  2 + x  » 13 

p ( G , j )  is the  n u m b e r  o f  se lec t ions  o f /  d i s c o n n e c t e d  edges in G,  whe re  b y  d e f i n i t i o n  

p ( G ,  1) = 0. A t o p l o g i c a l i n d e x  Z a is de f ined  [12] to  be" 

m 

Z G =H(G;1 )  : Z p(G,k). (28) 
k=O 

The c o u n t i n g  p o l y n o m i a l s  o f  the  first  few m e m b e r s  o f  the  n o r m a l  a lkanes  for  w h i c h  

the i r  m o l e c u l a r  g raphs  are pa ths  are given in tab le  2. We observe  t h a t  t he  p o l y n o m i a l s  

o f  t ab les  2 and  3 are iden t i ca l .  F u r t h e r m o r e ,  the  t o p o l o g i c a l  ind ices  o f  t he  p a t h s  

genera te  the  F i b o n a c c i  s equence  [ 2 4 ] .  
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3.3. THE I N D E P E N D E N C E  P O L Y N O M I A L  [25]  

In his study of the topological properties of benzenoid systems. Gutman [25] 
defined the independence polynomial of  G, W(G; x)as: 

m 

W ( G ; x )  = ~ O ( G , k ) x  k . (29) 
k = O  

The coefficients O(G, k)'s count the number of choices of k nonadjacent vertices 
in G, again defining O(G,0 )=  1. Table 2 lists such polynomials for the first few 
paths. In a recent paper, Balasubramanian and Ramaraj [26] considered the inde- 
pendence polynomial under the name color polynomial. 

-- O---O---O--.<>--~ -- :: e--<>--.O--~ 

-- ~: O--O----O---<>--O -- :- O.--<>---O--O 

l:ig, 5, Graphical generation o f  F s. One-to-one mapping 
b e t w e e n  r(G~ k), p(G, k), and  O ( G ,  k).  Cf.  eqs.  (12) ,  (27)  

and (29), respectively. 

Figure 5 illustrates a one-to-one correspondence between nonadjacent hexagons 
(resonance relations [23]),  nonadjacent edges and nonadjacent vertices. 
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3.4. ROOK POLYNOMIALS [27,28] 

A rook polynomial is a combinatorial descriptor of  the adjacency relations 
of  the cells in a rook board [27]. The latter is a subset of a j x /  chessboard. 
A "chemical version" of these objects can be found in the work of Godsil and 
Gutman [28]. A rook polynomial R(G, x) can be defined analogously with sextet, 
counting and color (independence) polynomials (eqs. (12), (27) and (29). respectively). 
Thus: 

m 

R ( a , x )  = ~ .  ~ o ( C , k ) x  k . (30) 
k = O  

Again, ,#(G, k) enumerates the number of selections of k nonadjacent cells in the 
rook board, where ~0(G, 0) = 1. Here, two cells are defined to be adjacent if they 

l+3x+x2~F4 l+4x+3x2~F5 

"li" 5x+ 62-1 . x3~F6 "1+ 6x+ lOx 2 +4 x3~F7 

Fig. 6. Rook polynomials generating Fibonacci numbers. 

share a common row or column in the board and nonadjacent otherwise. Based on 
this definition, one can construct rook boards which generate Fibonac~i numbers 
(i.e. whose R (G, 1 )'s are Fibonacci numbers). Figure 6 shows a few such boards. 

35. THE PERMUTATION INTEGRALS (OF HERNDON [29])  AND THE CONJUGATED 
CIRCUITS (OF RANDIC [30])  

In his structure-resonance theory, Herndon [29] defined a permutation 
integral to indicate the permutaüon of (4i + 2) pi-electrons between two Kekulé 
valence stmctures belonging to a given benzenoid system. A count 7i of these integrals 
for a given hydrocarbon predicts its stability. Furthermore, twice these integral counts 
gives counts of  conjugated circuits (of Randi~ [30] ), i.e. 27i = Ri, where R i counts 
conjugated circuits involving (4i + 2) pi-electrons. Figure 7 shows the five Kekulé 
structures of phenanthrene and superpositions for the associated permutation integrals. 
There one finds 3'1 = 5, 72 = 2 , a n d %  = 1 (andthus,  R 1 = 1 0 , R  2 = 4,and  R 3 = 2)for  
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k 1 k 2 k 3 k 4 k 5 

k 1 

k 1 

k 2 

k 3 

k 4 

k 5 

Fig. 7. Permutation pi-electrons of phenantl~rene. 

k 2 k 3 k 4 k 5 

o o x ~ y  2 

o ~ x2 

o ~'3 

o/ 

8=F 5 5=F 4 2'3=F 2 "F 3 3'2=F 3 'F 2 

+ ~ + ~ } " "  7"l=2(Fs+F4+F2F3) 
R1 = 4 (Fs-t- F4 + F2 F3) 

5=F 4 8:F5 

5=F 4 

+ 

5= F 3 2.2:F2.F 2 5=F 3 

Oß~} " 7"2: 2(F4 + F3)+F2 F2 

R2=4 (F4 +F3 )+ 2F2 F2 
5: F 4 

Fig. 8. Graphical computation of R 2 and 7: 
of fulminene in units of Fibonacci numbers. 

phenanthrene. There is a graphic way of enumerating these parameters [31,29]. For 
example, to calculate 71 choose any hexagon in the system, delete this hexagon 
together with all edges incident with it, and calculate K for the remaining fragment. 
The process is repeated over all hexagons. Then 3'1 is the sum of all K's. For 3'2, two 
adjacent hexagons are removed at a time, and so on. The process is illustrated in 
fig. 8 for the "sixth member" of the fibonaccenes (fulminene). In fig. 9, we illustrate 
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[or (Fo]] 

(F 2 ) 

),« 

(F I) 

;"s 

(F 0 

(F I) (F I) (F I) 

b~b~ 
(F l) (F 1 ) 

Fig. 9. Graphical enumeration of all 7's for a branched all-benzenoid. 
Counts are given in terms of Fibonacci numbers. 

how to obtain permutation integrals 7's for a branched system in the units of  Fibonacci 
numbers. 

Table 4 shows all permutation integrals (and hence, also conjugated circuits) 
for several fibonaccenes. It is interesting to observe diagonal indentities [32] such as: 

3'1 ( 3 )  = 3's ( 4 )  = 3 ' 3 ( 5 )  = . . .  

3 '2 ( 3 )  = 3 '3  ( 4 )  = 3 ' « ( 5 )  = . . .  , 

or in general 
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3';(R) = 3`;+1 (R + 1), (31) 

where 3"i(R) counts / th permutation integrals of a fibonaccene containing R rings. 
Equation (31 ) is discussed in ref. [32]. 

A closed form for obtaining 3'i(R) in terms of Fibonacci numbers is given 
by [321 

n + l - i  

3"i(R) = ~_~ F n + l _ i _ k F k _  l . (32) 
k - 1  

To understand eq. (32), let us first calculate 3'1 (R) for a general fibonaccene as shown 
below: 

~ ° ° 

The length of the fibonaccene is R and we choose any arbitrary hexagon k, remove 
this hexagon and all edges incident to it and then the number of Kekulé structures of 
the remaining (disconnected) fibonaccene will be K ( A k _  z ) . K ( A  R _ k -1)  or, applying 
eq. (11), (F  k_ 1 .FR_ k)" Now to obtain 3'1 one must repeat the above operation over 
all hexagons in the fibonaccene. Then we can write: 

R 

v~(R) = Z F~_I e R - k  
k = l  

(33) 

Next, we calculate 7i(R)  in terms of % (R). To do this, we apply the diagonal identity, 
eq. (31), to give: 

3`i(R) = 71(R + 1 - i ) .  (34) 

Applying (34) and (33), we obtain the desired expression, eq. (32). A more formal 
elaboration of this subject is found in ref. [32].  Table 5 lists some 7 values for some 
branched all-benzenoid systems in units of Fibonacci numbers. 
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Table 5 

Branched all-benzenoid hydrocarbons with one branched center (fig. 4). Numbers 
in parentheses (from left to right) indicate 3',, "r2, - . ,  i.e. number of permutation 
integrals involving 6, 1 0 , . . ,  pi-electrons, respectively, in units of Fibonacci numbers 

A l l  

(F~ + 3F~), (3F~), (2F~), (F l ) 

AI2 

(I«~ +F] +2F2F~ +F4), (F, + 2 F 2 + F ~ )  , (3F, +F2) , (3F,) ,  (F , )  

A13 

(2/;'~ +2F2F" +F 3 +2F4)  , (F 2 + F  2 + F  3 +F«),  (F~ + 2 F  2 +F~ +F3) , 

(3F~ + F : ) ,  (3F~), (F~) 

A14 

(F2F 3 +F2F « +2F2F  s +F~F 3 +F~F« +F 4 +Fs)  , (2F~ + F  3 + 4F~), 

(F 2 +F~ + 2 ( F  3 +F«)),  (F~ + 2 F  2 +F~ +F»),  (3F~ +F2),  (3F~), (F~) 

3.6. MAXIMAL INDEPENDENT SETS OF THE VERT1CES OF A CATERPILLAR TREE 
AND KING POLYNOMINO GRAPHS 

The vertices of  a graph can, in general, be partitioned into a finite number of  
sets. A set of  vertices in which no two vertices are adjacent is called an i n d e p e n d e n t  

set of vertices. An independent set of  vertices { V(r)} in G is said to be m a x i m a l  [33] 
if every vertex of  G ~ {V(r)} is adjacent to at least one of  the r verties of  {V(r)}.  
Orte of  the authors of  ref. [34] has recently demonstrated that the maximal inde- 
pendent sets of  the vertices of  a caterpillar tree [ 3 5 - 3 9 ]  T t ( i , j , k  . . . . .  m), 
where l, i, j ,  k . . . . .  m are all > 0 ,  generate Fibonacci numbers. First we define 
T t ( i , / ,  k . . . . .  m): it is a tree formed from a path on l vertices by the addition of  
i , f ,  k . . . . .  m monovalent vertices to its first, s e c o n d , . . . , / t h  vertex. For example, 
the tree shown in fig. 10 is T 4 (3, 1, 1 ,2) .  Let the number of  maximal independent 
sets of  T t (i, j, k . . . . .  m) be ~'t ; then the following result was proved [34] : 

~'l = Ft+I (35) 

and thus 

~1+2 = s't+l + ~).  (36) 
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Fig. 10. All maximal independent sets of vertices of 
T« (3,1,1,2) and the corresponding king polyominos. 

The set generates F s = 8. 

In fig. 10, the eight maximal independent sets of the vertices of T 4 (3, 1 , 1 , 2 )  
are shown on the left. These sets can be obtained by coloring the vertices in black and 
white (or any two different colors) such that: 

(a) no two black vertices are ädjacent, and 

(b) every white vertex is adjacent to at least one black vertex. 

The number 8 is equal to Fs, which is in agreement with eq. (35). The latter equality 
is proved in ref. [34]. The proof might be approached in many ways, the easiest of  
wtnch involves distinguishing the root vertices (i.e. those making the backbone of the 
caterpillar) from the monovalent vertices (which make its "feet").  It is clear from 
rules (a) and (b) that the "feet" attached to any white root vertex must be black 
and the "feet" attached to any black vertex must be white. Thus, the problem reduces 
to finding the number of selections of k independent vertices of the backbone for 
0 <~ k «. l, l being the number of root vertices. Such counts are given [25] the symbol 
O(G, k), cf. eq. (29), and they constitute the terms of the independence poly- 
nomial [25] (which is also called the coloring polynomial [26] ). 
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These trees are the dualist graphs [40] of certain polyominos [41]. For the 
particular caterpillar T 4 (3, 1 ,1 ,2 ) ,  the polyomino graphs shown on the right-hand 
side of fig. 10 correspond to individual maximal independent sets. The set of 
polyominos shown in fig. 10 represent the so-called king pattern [41], i.e. the number 
of ways of placing k non-attackäng kings (i.e. no two kings in two adjacent cells) on 
the polyomino board. From fig. 10, it can be concluded that there are three ways 
of placing seven non-attacking kings, two ways of placing six or five non-attacking 
kings, but only one way in which one can distribute four non-attacking kings on this 
particular polyomino graph. Again, the total number of ways is eight, which is F s . 

3.7. CLAR STRUCTURE COUNT OF CERTAIN BENZENO1D HYDROCARBONS 

Figure 11 shows a homologous series of benzenoid hydrocarbons denoted as 
B(Tn, 1 )'s. We observe that the dualist of B(Tn,I) is  simply the caterpillar tree Th, 1 . 
Since maximal independent sets of vertices of  such trees generate Fibonacci numbers 
(cf. section 3.6), one expects that the number of Clar structures in which maximum 
numbers of hexagons are assigned to have resonant sextets conforms to eqs. (35) 
and (36), i.e. 

(35) 

~'(B(T-n + 2,1)) = ~'(B(Tn + I,I)) + ~'(B(Tn,I)), (36) 

where f (B(Tn,1)  ) is the number of  Clar structures of B(Tn,1). This result may be 
understood by mapping the vertices of Th, 1 onto the hexagons of B(Tn, 1 ) where, say, 
black vertices correspond to hexagons with Clar circles and white vertices to hexagons 
without circles. Figure 12 shows all five (= F«) Clar structures of B(T3,1 ). 

4. S u m m a r y  a n d  c o n c l u s i o n s  

Fibonacci numbers define counts of several combinatorial objects related to 
the topological theory of benzenoid hydrocarbons as well as the Clar sextet theory. 
In particular, enumeration of the following leads to Fibonacci numbers: 

(1) The number of Kekulé structures of nonbranched all-benzenoid hydro- 
carbons. 

(2) The total number of matchings of the edges of a path tree. 

(3) The total number of independent sets of vertices of  paths. 

(4) The number of non-attacking rooks of certain rook boards. 

(5) The number of Clar structures of certain benzenoid hydrocarbons. 
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Fig. 11. A family ofbenzcnoid hydrocarbon~ whosc 
Clar counts art  I:ibonacci numbcrs (sec fig. 12). 

Fig. 12. All five (=F«)  Clar structures ot" B ( T 3 ,  t ). 
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(6) The number of  maximal independent sets of  any caterpillar tree of the 
form 7} (m 1 , m 2 . . . . .  rot), where all m's >/ 1. 

In addilion, the number of  conjugated circuits (and thus permutafion pi- 
electron integrals) of all-benzenoid hydrocarbons can be expressed as simple functions 

of  Fibonacci nmnbers. 
II is worth noting that Fibonacci numbers were also obtained as the number 

of  dimer coverings (i.e. Kekulé structures) on ladder graphs. Here, the latter graphs 
are equivalent to the fibonaccenes. Further, the Fibonacci recurrence such as eq. (11) 
is independent of the ends appended to the fibonaccene chain (as long as the ends 
involve appending an el,en number of sites to the ends), an observation which seems 
to have been first reported by Cyvin and Gutman [42],  who also note that another 
form ofeq .  (11) viz., 

K(Ai+z) = K ( A , ) F i +  ~ + K(Ao)t; ) ,  (37) 

(where K(A o) = 1), Equalion (37)  represents what is called a "double Fibonacci 
sequence" [7]. 

Recenlly, Klein and Seitz [43] have shown that "similar" forms of eqs. 
(19) (26) uclually apply to a/o~ catacondensed benzenoid hydrocarbon. 
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